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Rational design of a diffractive homogenizer for a laser beam
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Abstract. The problem of designing a diffractive optical element (DOE) that produces a uniform-intensity beam
from a spatially variable source is considered. Under the thin-lens approximation, the DOE is fully characterized
by a phase function. Fresnel approximation is used to simplify the relationship between the input amplitude, the
phase function, and the image intensity. The case where the light source has partial coherence is considered. A
simple design procedure based on a lenslet array is proposed. It is shown that under certain physical assumptions,
this ‘engineering’ solution leads to an effective design capable of producing a uniform intensity from a time-
varying, non-uniform source.
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1. Introduction

Lasers are currently used in many processes in which materials are manipulated, including
abalation of polymers, cutting of both metals and non-metals, and annealing of semiconduc-
tors. In many applications the processes include not only changing the materials’ properties
but patterning them as well. In most of the applications, uniformity of the laser intensity
over the entire beam is extremely important. Unfortunately, excimer lasers, widely used in
processing materials, rarely have beams with the uniformity necessary for many applications.
Equally important, the beam profile shifts over time in unpredictable ways.

The goal of the work described in this paper is the design of an optical element that
transforms the intensity profile of the laser to provide a beam with very uniform intensity
over the area of the work in the plane of the material. Several additional requirements are
imposed on the design that severely restrict the design options. Foremost among them is that
the passive optical element maintain uniformity, even as the beam profile shifts with time. In
addition, the element must be very efficient; that is, a high percentage of the beam energy
must be delivered to the work space.

For reasons of high efficiency and low cost, a diffractive rather than a refractive solution
is desired. Computer-generated holograms are diffractive optical elements (DOE) that permit
very general changes in phase and amplitude of an incoming wave. By adjusting the local
phase of the wave, it is possible to diffract the light into a given two-dimensional intensity
pattern. The design problem is thus reduced to finding the phase function, φ(ξ, η), that creates
the desired target intensity IT (x, y) in the image plane. The DOE responsible for the phase
shifts is called a phase mask. Although it is now possible to create masks that adjust the
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phase continuously, ones that alter the phase from −π to π in 2 to 16 discrete steps are more
common and inexpensive to fabricate.

An additional complication is the need to account for the incomplete or partial coherence
of the laser beam. An extended light source consists of many atomic oscillators, which act
as light emitters. The phase and amplitude of these emitters undergo random fluctuations. If
the emitters are close enough to each other, the fluctuations will not be independent. However,
even in a laser, the fluctuations will be independent or uncorrelated when the separation is suf-
ficiently large. When the fluctuations between the two points are perfectly correlated, then we
say the emitters are coherent and we observe interference between waves arising from the two
emitters. When the fluctuations are independent, the difference between the phases of the two
emitters is random and we observe no interference phenomena in the time-averaged intensity.
In reality, the correlation between the phases decays gradually as the separation between the
two emitters increases. We will demonstrate that this partial coherence has profound effects
on the intensity generated by a DOE.

In this paper, we develop a computationally economical but rigorous theoretical approach
for incorporating the effects of partial coherence into the design of DOEs and an engineering
approach to the design of a homogenizer that is insensitive to drift in the beam profile. We
verify the engineering design by the direct simulation of intensity distribution in the image
plane. The remainder of the paper is divided into three sections. In the following section we
describe the technical approaches used to solve the problem. These include both the theory
and the engineering ideas. The next section describes numerical results for a specific design
case. We conclude with a discussion and summary.

2. Technical approach

Two problems need to be addressed to fully explore the problem of a beam homogenizer.
First, one needs to construct a transformation between the phase change φ(ξ, η) introduced
to the wavefront U(P ′) and the intensity I (P ) in the image plane. The transformation must
include the effects of partial coherence of the input intensity. Second, one needs to determine
the phase function that creates the proper target intensity.

Let P(x, y, z) be a point on the image plane, and let P(ξ, η, 0) be a point on the phase
mask. For a fully coherent wavefront U(P ′) in the plane of the phase mask, the electromag-
netic field on the image plane U(P ) is given by the Kirchhoff formula [1, p. 41],

U(P ) = z

iλ

∫∫
U(P ′)

eikr

r2
ds (1)

where r = |P ′P | and k = 2π/λ. The intensity at the image plane is given by the square
modulus of the field

I (P ) = |U(P )|2. (2)

For z much greater than the extent of the aperture, we can use the Fresnel approximation,
where r is approximated by

r ≈ z

[
1 + 1

2

(
x − ξ

z

)2

+ 1

2

(
y − η

z

)2
]
. (3)

Let p(ξ, η) = U(P ′)eiφ(ξ,η). Combining (3) and (1), as shown in [1, p. 60], we have
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U(x, y, z) = e
ik

(
z+ x2+y2

2z

)

iλz

∫∫ {
p(ξ, η)ei k2z (ξ

2+η2)
}

e−i k
z
(xξ+yη)dξdη, (4)

which, aside from multiplicative factors, is the Fourier transform of a modified field

p̃(ξ, η) = p(ξ, η)ei k2z (ξ
2+η2).

If F [g] denotes the two-dimensional Fourier transform of a function g, then,

U(x, y, z) = e
ik

(
z+ x2+y2

2z

)

iλz
F [p̃]

(
x

λz
,
y

λz

)
, (5)

and

I (x, y) = 1

(λz)2

∣∣∣∣F [p̃]
(
x

λz
,
y

λz

)∣∣∣∣
2

. (6)

The partial coherence of the laser beam is taken into account by use of the theory of Wolf
[2]. When the effect is included, Equations (1) and (2) are modified, and the intensity in the
image plane is determined by

I (P ) = z2

λ2

∫ ∫
ds′′

∫ ∫
ds′U(P ′)eiφ(ξ,η)U ∗(P ′′)e−iφ(ξ ′,η′) e

ik(r ′−r ′′)

(r ′r ′′)2
γ (|P ′P ′′|). (7)

Here, both P ′ and P ′′ are points on the phase mask, and r ′ = |PP ′| and r ′′ = |PP ′′|. The
coherence function γ (r) is a symmetric nonnegative function of r such that γ (0) = 1. γ (r) ≡
1 corresponds to the full coherence model, and (7) reduces to (1) and (2). In general, the
partial coherence function goes to 0 as the separation between the points becomes large; that
is, γ (r) → 0 as r → ∞.

When z, the distance from the plane of the aperture to image point, is much greater than
the size of the aperture, we can again apply the Fresnel approximation. In that case, we can
write the intensity as

I (x, y, z) = 1

(λz)2

∫∫ ∫∫
p̃(ξ, η)p̃∗(ξ ′, η′)e−i kz (x(ξ−ξ ′)+y(η−η′))γ (r)dξdηdξ ′dη′, (8)

where r = √
(ξ − ξ ′)2 + (η − η′)2. By a change of variables ξ − ξ ′ = ξ ′′ and η − η′ = η′′, it

is possible to rewrite (8) as

I (x, y, z) = 1

(λz)2

∫ ∫
dξ ′′dη′′g(ξ ′′, η′′)γ

(√
ξ ′′2 + η′′2

)
e−i k

z
(xξ ′′+yη′′), (9)

where

g(ξ ′′, η′′) =
∫ ∫

dξdη p̃(ξ, η)p̃∗(ξ − ξ ′′, η − η′′).

Apart from trivial constants, the integral in (9) is the two-dimensional Fourier Transform
of the product of g and γ ; therefore, we may use the convolution theorem to write

I (x, y, z) = 1

(λz)2
F [g(ξ, η)]

(
x

λz
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λz
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∗ 1

(λz)2
F [γ (
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)
, (10)
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where ∗ denotes convolution.
Equation (10) shows that the intensity generated by a partially coherent beam is simply

related to the intensity from a fully coherent beam. Because we want to differentiate between
the cases of full and partial coherence, we let IFC denote the intensity from a fully coherent
beam and IPC denote that arising from a partially coherent beam. Since F [g] = |F [p̃]|2, it
follows that

IPC(x, y, z) = 1

(λz)2
|F [p̃]|2 ∗ 1

(λz)2
F

[
γ

(√
ξ 2 + η2

)]
.

By identifying IFC in (6), we obtain

IPC = IFC ∗G. (11)

G is called the slit function and is proportional to the Fourier Transform of the coherence
function. Note that if γ ≡ 1, then G(x, y) = δ(x, y) and IPC = IFC , as we expect. On the
other hand, in general, G acts as a smoother of IFC .

The advantage of Equation (11) is that it involves calculation of two double integrals of
O(2n2) operations, while Equation (7) requires calculation of one four-dimensional integral
of O(n4) operations. It also provides better insight into how partial coherence affects the
intensity profile.

In spite of the simplicity of the relation in Equation (11), its use is limited. For example,
given a target image IT and a known slit function G, it is tempting to define a modified target
image by the equation

ĨT ∗G = IT .

and attempt to solve by the standard deconvolution procedure F [ĨT ]·F [G] = F [IT ]. In most
cases, the solution does not exist because F [G] decreases faster than F [IT ].

We have a complete solution to the first technical problem, namely, finding a transforma-
tion between the phase function and the intensity for the case of partial coherence. The second
task is to find the phase function that generates a uniform intensity in the image plane given
an arbitrary intensity function in the plane of the phase mask. The electromagnetic field in the
plane of the phase mask, U0(ξ, η), can be written as

U0(ξ, η) = A(ξ, η)eiψ(ξ,η).

In the remainder of the paper, we will assume that the phase ψ is constant, independent of
ξ and η. The target image that we seek is a uniform intensity within an area bounded by
|x| ≤ Tx/2 and |y| ≤ Ty/2. Thus, we seek a phase function

φ(x, y) : A(x, y) → rect

(
x

Tx

)
rect

(
y

Ty

)
.

Several approaches [3, 4, 5, 6] have been used to design phase masks, but all have dealt
with optimizing the phase function for a fixed input amplitude. One option for designing our
homogenizing diffractive element would be to generalize those methods to seek the optimal
design under the condition of a variable amplitude. We chose a different approach, more
‘engineering’ than ‘analytical’, based on an existing refractive homogenizer consisting of an
array of lenslets. Each lenslet images the portion of the beam impinging on it on the entire
target. If the area of the lenslet is sufficiently small, the lens array creates a uniform average
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intensity in the image plane. The design was extended to a diffractive homogenizer in [7]. The
approach is to divide the aperture of dimensions L × W into N × N small subintervals of
length # = L/N and w = W/N . The phase mask within each small subinterval is designed
to project a uniform field within that subinterval onto the entire image. If the subintervals are
sufficiently small, so that the variation in amplitude is small, the intensity in the image plane
will approach a uniform, average value.

The success of the design outlined in the previous paragraph depends on two hypotheses
which we verify later either analytically or numerically. First, we assume that the interactions
between sub-intervals can be neglected. In that case, the cumulative intensity from an entire
mask can be approximated as a sum of intensities arising from different sub-elements. This is
not true for the fully coherent beam since |U1 + U2|2 �= |U1|2 + |U2|2, but it may be a good
approximation for beams with ‘small’ coherence lengths. The second requirement is that the
amplitude is sufficiently uniform over the sub-element and the beam is sufficiently symmetric
to create a uniform average in the image.

The design problem can be greatly simplified if the amplitude of the incident beam A(ξ, η),
and γ are separable functions of ξ and η and IT (x, y) is a separable function of x and y.
When these conditions are met, the two-dimensional design problem can be reduced to two,
independent one-dimensional problems:

φx(x) : Ax(x) → rect

(
x

Tx

)
,

φx(y) : Ay(y) → rect

(
y

Ty

)
,

resulting in an overall phase function φ(ξ, η) = φx(ξ)+φy(η). A consequence of the condition
is that p and p̃ are also separable functions. In particular, p̃(ξ, η) = p̃xp̃y , where

p̃x(ξ) = Ax(ξ)e
iφ̃x (ξ),

and

φ̃x(ξ) = φx(ξ)+ πξ 2

λz
, (12)

is a modified phase function. In the remainder of the current paper, we will assume that A, γ ,
and I satisfy the separability conditions; therefore, the remaining analysis is restricted to the
one-dimensional case.

The analysis is also simplified because the solutions for the various sub-elements are not
independent. Note that for the central sub-element, we must find the modified phase function
determined by

φ̃(ξ ) : rect

(
ξ

#

)
→ U(x, z), |U(x, z)|2 = IT (x, z).

For a sub-element shifted by a distance a from the origin, we may use the shift theorem to
define a related problem:

φ̃(ξ − a) : rect

(
ξ

#

)
→ U(x, z)e−i k

z
a,

∣∣∣U(x, z)e−i k
z
a
∣∣∣2 = IT (x, z).
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Table 1. Parameters in the numerical experiment.

Parameter Description Value

L Aperture size 40mm

T Target size 26mm

z Target to image distance 1·4m

λ Wavelength 0·248µm

N Number of subintervals 10

d Pixel size (on image plane) 2µm

h Coherence length 100µm

Thus, it is sufficient to find the phase function for just the central element and replicate that
phase profile for all other sub-elements. With this approach the design ofN×N sub-elements
is reduced to just two one-dimensional problems.

The final step in the analysis of the homogenizer design is computing the phase function
of the central sub-element. To do this, we use a well-known method described in [3, 4, 8].
We will assume that the subelements are chosen sufficiently small, so that the amplitude A
may be considered constant over the sub-element. In that case, we seek a phase function that
transforms

rect

(
ξ

#

)
→

√
#

Tx
rect

(
x

Tx

)
.

Applying the method outlined in [3], we find the desired modified phase in the central element
is

φ̃0(ξ) = π

λz

(
Tx

#

)
ξ 2,

and, from Equation (12), the actual phase

φ0(ξ) = π

λz

(
Tx

#
− 1

)
ξ 2.

3. Numerical results

We now illustrate the application of the design methodology discussed in the preceding section
to a typical problem. The relevant parameters are shown in Table 1. In this case we image a
40×40mm beam onto a 26×26mm target. The beam aperture is divided into 10 sub-intervals
to guarantee good homogenization. The size of a sub-element is 4 × 4mm, and the aperture-
to-image distance is 1·4m. It is clear that the Fresnel approximation is valid. We assume a
Gaussian model for the coherence function; that is, γ (x) = exp(−π(r/h)2). For the particular
laser of interest, the manufacturer specifies a lateral coherence length of 100µm [9].

We will compare the results of a mask design with a continuous phase with masks with
discrete numbers of levels. In all cases – even the ‘continuous’ design – the phase takes on a
constant value within a pixel, which in the current study, is 2µm on a side. The phase profiles
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Figure 1. Parts of the quadratic phase and its discretizations.

Figure 2. The slit function G(x).

for the continuous and 4, 8, and 16 level phase functions are shown in Figure 1. The slit
function is shown in Figure 2.

Our initial computations are performed for a single sub-element. The results are shown
in Figure 3. The intensity profile for a fully coherent beam, determined by (6) for the phase
profile shown in Figure 1, is shown on the left-hand side of the figure. The uniformity of the
profile quickly degrades with decreasing number of levels in the phase function. The intensity
profiles for a partially coherent beam, determined by (11), are shown on the left-hand side of
the figure. Together, the figures clearly demonstrate the smoothing effects of partial coherence.

At this point we have explored only the case of a single sub-element. We now want to
turn our attention to the cumulative effect of all of the sub-elements. The assumption in our
engineering approach is that we can simply sum the intensities from all of the sub-elements.
This assumption fails in the case of a fully coherent beam, but may be satisfied for a partially
coherent laser.
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Figure 3. Intensity profiles compared with the target (shown in dashes).

We can estimate the effect of beam coherence on the profile by the following argument.
Assume that A(ξ) ≈ Aj is approximately constant on the subinterval of length # and at center
aj , j = 1, · · · , N . Let U0(x) and I0(x) represent the field amplitude and intensity on the
image plane from the central sub-element. Then, by the shift theorem, the cumulative field is

U(x) =
N∑
j=1

Aje
−i

kxaj
z U0(x),

and the full coherence intensity is

IFC(x) =
∣∣∣∣∣
N∑
j=1

Aje
−i

kxaj
z

∣∣∣∣∣
2

· |U0(x)|2 = R(x)I0(x).

Since R(x) is a highly oscillating function, IFC(x) will, in general, be very different from
I0(x). Thus, the engineering approach will fail for very coherent laser beams.

On the other hand, for partial coherence, the technique may work well. We can estimate
when it will. We may write

IPC(x) = IFC ∗G = (R I0) ∗G.
If the sum over sub-elements is a good approximation, then it must be the case that

IPC(x) = (RI0) ∗G ≈
[

N∑
j=1

A2
j

]
I0 ∗G. (13)

To see that this is plausible, we expand R(x)
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R(x) =
∣∣∣∣∣
N∑
j=1

Aje
−i2π

xaj
λz

∣∣∣∣∣
2

=
N∑
j=1

A2
j +

∑
j �=k

AjAke
i kx
z
(aj−ak).

We need to estimate the effect of the second term on IPC . Let us look at fixed j and k, and
consider the contribution to IPC from this term,

Sjk = AjAk

∫
ei kxz (aj−ak)I0(x)G(x − y)dy. (14)

Assume now that I0(x) is nearly homogeneous, and its target size, [−Tx/2, Tx/2], is much
larger than the width of the Gaussian G(x). For x away from ±Tx/2,

I0(x)G(x − y) ≈ KG(x − y),

where K is some constant. Therefore, we can rewrite (14) as

Sjk ≈ KAjAke
i kxz (aj−ak)

∫
e−i2π y

λz (aj−ak)G(y)dy

= KAjAke
i kx
z
(aj−ak)F [G]

(
aj − ak

λz

)

= KAjAke
i kxz (aj−ak)γ (aj − ak).

For γ (r) = exp(−π(r/h)2), clearly, we have

|Sjk| ≤ |AjAk| exp

[
−π

(
L

Nh

)2
]
.

This estimate gives us the conditions for N and L by which we can ignore the contribution
from Sjk, and conclude that (13) is justified. For the parameters in our example, the estimate
Sjk ≈ 0 is very well satisfied.

To complete our numerical studies, we compute the total intensity from all pixels without
approximation. To provide a more demanding numerical test of the design we have offset the
peak of the beam to simulate drift in the profile. The input intensity is shown in the top panel
of Figure 4.

The results are shown in the lower two panels of Figure 4. The center panel shows the result
for a perfectly coherent input. While the beam does image primarily within the target, the
oscillations in the intensity are much more rapid and irregular than those arising from a single
sub-element. This is easily seen by comparing the central panel of Figure 4 with the top left-
hand panel of Figure 3. The computations are consistent with our analysis of the unwelcome
effects of full coherence. When the computation is repeated for a partially coherent beam,
the smooth, regular profile of a single sub-element is recaptured. In Figure 4, we note that
the maximum intensity for the partially coherent source is much lower than that of the fully
coherent source. However, this is a conservative system. We verify this fact by computing the
area under the input intensity over the aperture, and those under the image intensity at the
image plane. We found the areas to be equal.

4. Concluding remarks

We have investigated the effects of partial coherence on the design for a diffractive homog-
enizer for a laser beam, whose profile changes over time. In particular, we have found a
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Figure 4. Top: input intensity. Center: full coherence intensity. Bottom: partial coherence intensity. Note the
amplitude difference between full and partial coherence.

compact, computationally economical expression for the image intensity of a partially co-
herent beam in terms of intensity of the fully coherent beam and the Fourier Transform of
the coherence function. We have used the result to study the intensity profile of a diffractive
lenslet and the superposition of lenslet elements. Surprisingly, partial coherence is important
obtaining the required uniformity with a phase function of fewer than 16 discrete steps.

To design our diffractive homogenizer, we used an engineering approach based on an
analogy to refractive homogenizer, rather than an analytical approach. Although the design
appears to work well, the efficiency of the phase mask can be quite low.

The main difficulty in this problem stems from the fact that the input intensity is time
varying. We have addressed this issue by creating a design consisting of lenslets. It is not
clear if this approach is very efficient. We are now considering an entirely different approach
using stochastic optimization to take into account the fluctuating input profile. In arriving at
the present design, we made an assumption that the coherence function and the phase functions
are separable. An approach where this assumptions is removed needs to be developed.
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